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I hold.., that in the physical world nothing else takes place but this variation 
[of the curvature of space]. 

William Kingdom Clifford 

The Weierstrass representation has been used to construct negatively curved graphite in 
which atoms rest no a perfect triply periodic minimal surface. By applying the Bonnet transfor- 
mation on a patch of the D surface decorated with graphite we have been able to construct the 
Gyroid and P minimal surfaces. Curvatures, densities and lattice parameters have been calcu- 
lated. It has been found that the maximum Gaussian curvature for our negatively curved struc- 
tures is less in magnitude than the Gaussian curvature of C60. In addition, a new periodic 
graphitic set with the same topology as the I-WP minimal surface has been obtained by introdu- 
cing pentagonal and octagonal rings. 

1. I n t r o d u c t i o n  

The discovery of  C60 and C70 [12-14] has brought  a new kind of  material  with 
interesting properties. The applications can range f rom lubricants to superconduc-  
tors [6,11,23], but  not  only C60 is important.  Iijima has found cylindrical tubes of  
graphite [10] and just  recently, Ebbesen et al. have produced considerable quanti-  
ties o f  these tubes [3] which can have applications as nanowires.  Thinking in terms 
of  the Gaussian curvature K (the product  of  the two principal curvatures),  ordin- 
ary graphite has zero K since it is composed of  flat layers. C60 and other  Fullerenes 
have positive K presenting the same topology as the sphere. Cylindrical graphite 
has also zero K because one of  the principal curvatures is zero. A quest ion arises 
here, if Fullerenes with K > 0 and ordinary graphite with K = 0 exist in Nature ,  
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what can we say about carbon sheets with K < 0? Such a surface with K < 0 has a 
saddle shape in which the principal curvatures have different signs. In the struc- 
tures mentioned above when K = 0 there are just hexagons, however, for K > 0 pen- 
tagonal (or smaller) rings of carbon must be present. In the case of K < 0, rings 
with more than six atoms must be introduced to get a saddle. We have found that 
the D, G, P and H triply periodic minimal surfaces (TPMS) can be decorated with 
largely graphitic sheets by introducing octagonal rings [17,25,27]. These surfaces 
are characterised by having zero mean curvature at every point, so that the surface 
bends equally to both sides just like a soap film. 

The history of minimal surfaces starts formally with J.L. Lagrange in the 18th 
century. In the 19th century the experiments of Plateau attracted the attention of 
mathematicians who have contributed greatly in the theory and discovery of new 
minimal surfaces. Recently, biologists, chemists, physicists and crystallographers 
have become interested in these surfaces as models of structures which can range 
from ionic crystals to biological systems [2]. 

While in the negatively curved graphite that we are proposing there are octago- 
nal rings and hexagons, Lenosky et al. and Vanderbilt et al. have suggested other 
arrangements with heptagonal rings and hexagons. These also have the same topol- 
ogies as TPMS, but are less symmetrical. In our case, every atom rests on a position 
of zero mean curvature and therefore on an exact TPMS. The D, G and P surfaces 
divide space into two congruent regions in which the inside is the same as the out- 
side. To ensure that the atomic positions belong to a minimal surface, we have used 
the Weierstrass representation. The G and P surfaces are obtained by the Bonnet 
transformation of a patch of the D surface. This transformation bends the surface 
without stretching and preserves the metric and the Gaussian curvature. Also, we 
have been able to calculate the maximum Gaussian curvature of our structures and 
compare it with the corresponding values of C60; both curvatures are very close, 
but the D, G and P structures are less curved. This fact can have important implica- 
tions in the energetics and stability of negatively curved graphite since the elastic 
energy depends on the Gaussian and mean curvatures. Densities and cell para- 
meters of negatively curved graphite are given. We also discuss the topology of 
curved graphite, including fullerenes. In the last section, we study a completely new 
periodic graphite structure with the same topology as the I-WP TPMS. 

2. Decora t ion  of  TPMS with graphite 

We have used the Weierstrass representation to decorate perfect TPMS with a 
graphitic net. For this task, the introduction of octagonal rings of carbon is neces- 
sary for obtaining the right symmetry; with heptagonal rings as described by Van- 
derbilt et al. [29] and Lenosky et al. [15], the symmetry of monkey saddles, which 
at their centres there are fiat points (points with both principal curvatures equal to 
zero), does not correspond to the symmetry of TPMS. Heptagonal ring structures 
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are less symmetrical than octagonal. As a direct consequence of this, the surfaces 
built with heptagonal rings do not divide space into two congruent regions, present- 
ing thus, two different labyrinths (one bigger than the other). This difference in 
the sizes of the labyrinths enables us to construct a bilayer of negatively curved gra- 
phite which also appears as an interesting possibility. 

The use of the Weierstrass representation is justified, firstly, because it guaran- 
tees that each atom in the surface rests on the minimal surface [7,19,20,30]. Sec- 
ondly, important parameters like the metric, normal vectors, Gaussian curvature 
and principal curvatures can be obtained easily [24]. Thirdly, the Bonnet transfor- 
mation can be performed to get associated surface patches for constructing other 
TPMS like the G and P surfaces [21]. 

In order to get the coordinates of the atoms in the real space we must decorate 
a patch of the surface in the complex plane. The complex plane corresponds to the 
stereographic projection of the Gauss map which is obtained by the normals to 
the surface in real space [16,20,30]. According to the Weierstrass representation, 
any point inside the integration domain in the complex plane is a point with zero 
mean curvature and, therefore, a point which belongs to a minimal surface. The 
form of the Weierstrass equations that we have used is the following: 

E/0 x = ( 1  - d , 

I; 1 y -- ~ i(1 + 2)R(w) dw , 
kdO 

z = 9~ 2wR(w , (1) 

where (x,y,  z) are the coordinates of the surface in real space, R(w) is the Weier- 
strass function which characterizes each surface, w = u + iv and i = v/Z-i . Having 
the coordinates of a patch in real space, symmetry operations can be used to get an 
extended part of the surface. 

For constructing the D (diamond) or F TPMS the Weierstrass function is given 
by[19,22] 

/J 

R(w) = x/,w 8 + 1 ' (2) 

where u is a normalization constant which in the case of graphite is equal to 
7.146 A. The integration domain of a tetrahedral saddle of the D surface consists of 
the region common to four circles with centres at (+l /x/2,  :ki/x/2) and radii 
[19,22,24]. (see fig. 1). At the points + ( x / 3 -  l ) /v~ ,  :k(v/3 - 1) i /v /2 ,+(v~ + 1)/ 
v~, -4-(x/3 + 1)i /v~ the Weierstrass function is zero and therefore, these are singu- 
lar points which correspond to flat points in the real space (where both principal 
curvatures are zero). 

After integrating numerically (eqs. 1), we get a saddle surface which is similar 
to a soap film hung on a tetrahedral frame (see fig. 2). Instead of considering a mesh 
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Fig. 2 (continued on next page). 
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Fig. 2.(a) Tetrahedral patch of the D surface. (b) Saddle of the G (gyroid) surface. (c) Saddle of the 
P surface. 

o f  points inside the integration domain,  we have considered jus t  a few points which 
represent the atomic positions. In table 1 we show the images of  the atomic posi- 
tions in the complex plane which correspond to the atomic coordinates  (x, y, z) in 
real space (see fig. 1 b). 24 points form a tetrahedral saddle for the D-surface which 
can be repeated to fill the space (see fig. 3). 

3. The  B o n n e t  t r a n s f o r m a t i o n  and  the c o n s t r u c t i o n  o f  the  G a n d  P T P M S  
d e c o r a t e d  wi th  g raph i te  

Schoen [21] found that the P and D T P M S  are related by a t ransformat ion stud- 
ied by Bonnet  during the last century [1,19]. The Bonnet  t ransformat ion preserves 
the metric, the Gaussian curvature and the mean curvature,  so the surface is jus t  
bent  without  stretching. A classical example is the t ransformat ion of  a catenoid 

Table 1 
Images of the normals of the atomic positions onto the complex plane for the D, G and P TPMS (ui 
and vi). Gaussian curvature Ki (in A-2), the radii of curvature rt (in A) and coordinates in real space 
for the D patch (in A). 

i Ui Vi Ki ri x y z 

0 0 0 -0.0783 4-3.573 0 0 
1 0.04 0.493656 -0.0109 4-9.573 0.7088 -3.5494 
2 0.149 0.41854 -0.0395 4-5.031 1.4163 -2.8419 
3 0.41854 0.149 -0.0395 4-5.031 2.8419 -1.4163 
4 0.49365 0.04 -0.0109 4-9.573 3.5494 -0.7088 
5 0.1 0.245 -0.0598 4-4 .089  0 . 7 6 7 3  -1.7288 
6 0.245 0.11 -0.0598 4-4.089 1.7288 -0.7673 

0 
-2.0 
-1.0 

1.0 
2.0 

-0.3533 
0.3533 
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Fig. 3. Tetrahedraljoint of the D surface made with graphite. 

into a helicoid (both are minimal surfaces). Schoen also discovered that  between 
the D and P surfaces existed a new one that he called Gyroid (G for short). This new 
TPMS is a very complicated object that does not present straight lines, but  divides 
the space into two congruent regions, one of which is the mirror  image of  the 
other. 

The Bonnet transformation consists in considering a new Weierstrass function 
formed by the product  ei~R(w). Therefore eqs. (1) become 

[/0 1 x = ~ e ~ (1 - J ) R ( ~ )  d~o , 

[ fo ° y = J~ e i/~ i(1 + R(w , 

[/o z = 5~ e i# 2wR(w) , (3) 

where/3 is known as Bonnet angle and can go from 0 to 2n. This t ransformation is 
a cyclic transformation in which the trajectories of  the points on the surface are 
ellipses [8]. For  the D patch/3 = 0, for the G patch/3 = 38.0147 ° and for the P patch 
/3 = n /2  [21]. We have applied the Bonnet transformation to the points given in 
table 1 to get saddles for constructing the G and P surfaces made  of  graphite (see 
figs. 4 and 5). Analogous transformations to the Bonnet for constant  mean curva- 
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Fig. 4. Cubic cell of the G surface decorated with graphite. 

ture surfaces like the cylinder and the sphere also can be analysed in terms of the 
Kenmotsu and Gackstatter equations [26]. 

4. Properties of  D,  G and P TPMS made of  graphite 

4.1. CURVATURE FOR CURVED GRAPHITE 

Since in ordinary graphite the atoms rest on hexagonal layers (planes) separated 
by a certain distance, the curvature is zero. In C60, as in other Fullerenes, the struc- 
ture closes itself presenting therefore positive Gaussian curvature (both principal 
curvatures are positive). Iijima has found cylindrical tubules of carbon [10] having, 
as in a cylinder, zero Gaussian curvature (one of the principal curvatures is zero). 
In the structures with rings of more than 6 atoms the Gaussian curvature is negative 
(the principal curvatures have different signs) and, therefore, are composed of sad- 
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Fig. 5. Two cubic cells of the P surface decorated with graphite. 

dle points. In particular, we have analysed the case of eight membered rings since 
with these, structures with atoms lying on a perfect TPMS can be built. 

Using the Weierstrass representation the Gaussian curvature of  a minimal sur- 
face can be expressed in a simple way as 

- 4  
K = (4) 

IR(~)Ia(1 + [a)[=) 4" 
The maximum Gaussian curvature of the D, G and P graphitic structures is at 

the center of  the octagonal ring at w = 0 (u = 0, v = 0) in the complex plane. Using 
eq. (4) we get that the maximum Gaussian curvature is Kmax = -0.0783 A -2 with 
a radius of  curvature is +3.573 A. It is interesting to note that  the radius of curva- 
ture of  C60 (truncated icosahedron) is 3.5187 A (r = x/-2. (29 + 9x/5-bond/4) ,  
therefore, almost identical in magnitude to the maximum value of  our negatively 
curved structures. However, our structures are less curved. In the case of  Lenosky's 
and Vanderbilt 's structures the Gaussian curvatures are higher. We also have cal- 
culated the maximum Gaussian curvature for a hyperbolic paraboloid which is a 
good approximation to the tetrahedral saddle of the D surface, obtaining that  the 
Kmax = -0.1102 ]k -2 with a radius of curvature 3.01 A. 

Graphitic structures with negative Gaussian curvature complete the spectrum 
of  graphite with different curvatures. The problem is that negatively curved gra- 
phite has not  yet been observed, but geometrical and energy properties suggest that  
it is worthwhile to put  some effort in its synthesis. 

4.2. TOPOLOGY OF CURVED GRAPHITE 

According to the Gauss-Bonnet  theorem we can relate the angular excess of  
our graphitic structures to their genus. If  in general we have a structure with penta- 
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gonal, hexagonal, heptagonal, octagonal, nine-membered and ten-membered 
rings of carbon, the excess can be expressed as 

N5 - N7 - 2N8 - 3N9 - 4N10 = 6X = 12(1 - g), (5) 

where Ns, N7, Ns, N9, N10 are the numbers of pentagonal, heptagonal, octagonal, 
nine-membered and ten-membered rings of carbon, respectively, X is the Euler 
characteristic and g is the genus of the structure. In the case of C60 there are 12 pen- 
tagonal rings, so the genus is zero (the same as the sphere); the number of hexagons 
is not taken into account since the excess of a hexagonal mesh is zero (flat surface 
with zero curvature as in ordinary graphite). It turns out that 12 octagonal rings are 
needed to construct the primitive rhombohedral cells of the D, G and P surfaces, 
so that their genus per primitive cell is 3 (see table 2) [4,5,9,18]. When the cubic cells 
are considered, then the number of octagonal rings is 48 for the D, 24 for the 
G and 12 for the P. Lenosky et al., [15] and Vanderbilt et al., [29] have proposed 
structures with heptagonal rings which need 24 heptagonal rings per primitive cell 
to get a structure with the same topology as the D, G and P surfaces (surfaces with 
genus 3). According to eq. (5), it is also possible to obtain topologically equivalent 
structures with rings of nine and ten atoms. 

Let us concentrate for the moment in genus 3 structures with octagonal, hexago- 
nal and heptagonal rings. Then, according to eq. (5), the structures can be closed 
if we introduce 36 pentagonal rings obtaining in this way a surface topologically 
equivalent to the sphere (genus = 0). For simplicity, consider the 192 P surface 
decorated with graphite; this can be closed by introducing extra rings of seven and 
six atoms in one of the six holes, and then closing with 6 pentagons which form 
part of C44. We note that a cylinder can grow from this end. If we applied this clos- 
ing operation in all six faces of the cubic cell, the surface can be closed with 
6 x 6 = 36 pentagons. Also note that if we replace the eight with seven membered 
rings, we can get another periodic surface similar to the P surface proposed by 
Lenosky, but with a unit cell having 288 atoms; this new structure does not divide 
the space into two congruent regions. A structure closed in the way mentioned 
above presents regions of positive (C44 Fullerene), negative (heptagonal rings as 

Table 2 
Properties of D, G, P and I-WP surfaces made with graphite, a is the lattice parameter in A, Np is 
the number of atoms per primitive rombohedral cell. Nc is the number of atoms per cubic unit cell. gp 
is the genus per primitive cell and gc is the genus per cubic unit cell. p is the density in g/era 3. 

Surface D surface G surface P surface I-WP 

a 24.09 18.98 15.41 24.09 
Np 192 192 192 372 
Nc 768 384 192 744 
gp 3 3 3 4 
ge 9 5 3 7 
p 1.096 1.129 1.04 9 1.061 
symmetry F d3m Ia3d Im3m I43m 
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in TPMS) and zero mean curvature (in the cylindrical tubules). Further, if instead 
of octagonal rings in the P surface, we put hexagonal rings, closing with 2 pentago- 
nal rings for each face, then, a Fullerene with Th-symmetry can be obtained; this 
Fullerene has 276 atoms and its maximum Gaussian curvature is exactly the same 
as C60. 

In order to get structures with genus 1 and 2, we just have to close 4 and 
2 holes, respectively, in the P-surface. A surface with genus 2 can be used to fill the 
plane (doubly periodic) while a surface with genus one is singly periodic. 

In table 2 we show some properties of the structures D, G and P made of 
graphite. 

5. Graphi te  net with the same topology as the I -WP TPMS 

All graphite structures with negative curvature reported until now have genus 
3, except for one given by Townsend et al. which has genus 13 per primitive cell; this 
structure has been made with pentagons, hexagons, heptagons, octagons and 
nine-membered carbon rings [28]. By introducing pentagons, hexagons and octa- 
gons we have constructed a triply periodic graphite structure with the same topol- 
ogy as the I-WP TPMS found by Schoen in 1970 [21]. This new net has 24 
pentagonal rings (12 per primitive cell) and 48 octagonal rings per cubic cell (24 per 
primitive cell), therefore, has genus 4 per primitive cell and genus 7 per cubic cell 
as in the I-WP TPMS. The angular excess due to the pentagons in the primitive cell 
is 4re and due to the octagons is -16n,  so the total angular excess is -12n.  Note 
that since there are pentagons, regions of positive curvature are present, so the 
atoms in this case do not lie in the exact TPMS. The new I-WP graphitic structure 
has 744 atoms per cubic cell, belongs to the I2~3m space group with a lattice para- 
meter of 24.09 A, density of 1.061 g/cm 3, has channels in the [111] directions and 
does not divide space into two equal regions (see table 2 and fig. 6.). It is interesting 
to mention that another structure with the same topology and symmetry (Im3m) 
as the I-WP TPMS has been obtained, but this one presents rings of four carbon 
atoms which are less likely to be formed than pentagons. 

6. Conclusion 

It has been shown that by using the Weierstrass representation, the D, G and 
P surfaces can be decorated with graphite. Cell parameters, densities and the 
Gaussian curvatures have been calculated. We have found that the D, G and P gra- 
phite TPMS are less curved than C60. In addition, a new periodic graphitic sheet 
with the same topology as the I-WP TPMS has been found by the introduction of 
pentagonal and octagonal rings. The next step should be the decoration of other 
surfaces with different kinds of elements and compounds. Finally, negatively 
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Fig. 6. Cubic cell of the graphitic I-WP constructed with pentagons, hexagons and octagons. 

curved graphite completes the cases of  graphite with different curvatures and 
appears to be an interesting possibility which may  have important  properties if  
synthesized. 
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